Nonuniform Sparse Recovery with Subgaussian Matrices
نویسندگان
چکیده
Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incomplete information using efficient recovery methods such as `1-minimization. Random matrices have become a popular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such matrices. In this note we focus on nonuniform recovery using subgaussian random matrices and `1minimization. We provide conditions on the number of samples in terms of the sparsity and the signal length which guarantees that a fixed sparse signal can be recovered with a random draw of the matrix using `1-minimization. Our proofs are short and provide explicit and good constants.
منابع مشابه
Uniform recovery of fusion frame structured sparse signals
We consider the problem of recovering fusion frame sparse signals from incomplete measurements. These signals are composed of a small number of nonzero blocks taken from a family of subspaces. First, we show that, by using a-priori knowledge of a coherence parameter associated with the angles between the subspaces, one can uniformly recover fusion frame sparse signals with a significantly reduc...
متن کاملUniform Recovery from Subgaussian Multi-Sensor Measurements
Parallel acquisition systems are employed successfully in a variety of different sensing applications when a single sensor cannot provide enough measurements for a high-quality reconstruction. In this paper, we consider compressed sensing (CS) for parallel acquisition systems when the individual sensors use subgaussian random sampling. Our main results are a series of uniform recovery guarantee...
متن کاملar X iv : 1 10 6 . 11 51 v 1 [ m at h . ST ] 6 J un 2 01 1 Reconstruction from anisotropic random measurements ∗
Random matrices are widely used in sparse recovery problems, and the relevant properties of matrices with i.i.d. entries are well understood. The current paper discusses the recently introduced Restricted Eigenvalue (RE) condition, which is among the most general assumptions on the matrix, guaranteeing recovery. We prove a reduction principle showing that the RE condition can be guaranteed by c...
متن کاملNonuniform Sparse Recovery with Gaussian Matrices
Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incomplete information. Efficient recovery methods such as l1-minimization find the sparsest solution to certain systems of equations. Random matrices have become a popular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such matrices. In this note we f...
متن کاملSparse recovery based on q-ratio constrained minimal singular values
We study verifiable sufficient conditions and computable performance bounds for sparse recovery algorithms such as the Basis Pursuit, the Dantzig selector and the Lasso estimator, in terms of a newly defined family of quality measures for the measurement matrices. With high probability, the developed measures for subgaussian random matrices are bounded away from zero as long as the number of me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010